CHARACTERISTICS OF PHYSICAL LOADS ENDURED BY MILITARY OFFICERS OF MECHANIZED TROOPS DURING FIELD MANEUVERS

Shlyamar I.L. 1, Yaworsky A.I. 2, Romanchuk S.V. 3, Petruk A.P. 3, Dzyama V.V. 4, Romaniv I.V. 5, Vorontsov A.S. 6

1The command of the Army of the Armed Forces of Ukraine
2Lvov State University of Physical Culture
3Hetman Petro Sahaidachny Academy
4Military unit A 0284
5Military unit A 1108
6Security Service of Ukraine

Abstract. Purpose: observation over influence of physical loads on military officers in process of acquiring and mastering of military applied skills during field maneuvers. Material: in experiment 120 military officers of 20-25 years old age with equal physical fitness participated. Results: it was determined that in period of field maneuvers the greatest load was endured by military officers in attack exercises and on the march. The least physical loads were in period of organization and fulfillment of combat shooting. It was also established that main part of motor actions was fulfilled in aerobic mode. Military officers’ functioning in field maneuvers was accompanied by heart beats rate of 120-150 b.p.m. and 60-90 b.p.m. during long time. Conclusions: We offered to practice physical training of mechanized units’ military officers in modes, close to field ones.

Key words: physical loads, military officers, heart beats rate, field maneuvers.

Introduction

Analysis of physical training system in Armed Forces of Ukraine shows that it is insufficient for ensuring of troops combat readiness. One of reasons is old means and technologies of military officers’ physical training. Analysis of combat training’s requirements to military officers’ physical fitness points at demand in reformation and improvement of physical training system.


That is why there has been appeared a demand in researching of HBR dynamic as objective criterion of load’s tension and value with modern objective methods.

Purpose, tasks of the work, material and methods

The purpose of the work is to determine characteristics of physical loads, endured by Land Forces mechanized troops’ military officers during field maneuvers.

The tasks:
- Conduct timing of military officers’ motor functioning during field maneuvers;
- Register HBR dynamic of military officers during fulfillment of military applied actions.

The methods of the research: analysis of literature, scientific and Internet sources, observation, medical-biological methods (pulse metering with system «Polar Team System»), method of mathematical statistic.

Organization of the research: as per idea of the research it was necessary to determine (with the help of system «Polar Team System») pulse value of different variants of military-professional actions (total quantity of HBR – heart beats rate of military officers during certain period of field maneuvers) In the research 120 military officers of 169 Training center of 20-25 years old age participated. The research was conducted during September 2012, with officers’ dress code – field and ammunition of 30-40 kg weight.

Results of the research

Orientation of loads is one of main signs of physical loads’ qualification (M.A. Godik, 1980). Its studying permits to understand requirements of training-combat functioning by qualitative character of military officers’ motor actions.

The research of variability of alternation of different orientation’s loads permits to receive materials, which can explain the reasons of weakening of military officers’ professional workability in field marches. The received data can serve as a model for construction of trainings in organization of military officers’ physical training.

Orientation of physical loads was studied by analyzing of motor actions’ timing during 2 days’ (48 hours) field marches in summer period with air temperature up to 30°. With it, we continuously registered HBR with “Polar Team System” of individual military officer. The received data were processed with the help of program Microsoft Excel – 2007. Mean HBR of military officers in rest was 60 b.p.m.

http://dx.doi.org/10.15561/18189172.2015.0909
During 2 days’ field maneuvers military officers of mechanized units fulfilled a number of tasks: preparing of arms and machinery (IFV) for moving, 50 km march on IFV, two ten kilometers’ marches by foot in full military ammunition; tactic tasks during attacking of enemies positions; training-combat shooting from all kinds of arms. We calculated mean HBR for 1 minute, determined HBR changes during fulfillment of every combat task in respect to indicators in rest.

Motor actions of military officers during field maneuvers were conventionally divided into the following kinds (of professional-combat functioning):

1. Actions by training alarm signal.
2. Preparation of arms and machinery for march and shooting.
3. March on IFV with rest.
4. Functioning in the staging area.
5. Organization of defense and repelling of attack.
6. Actions in attack and capture of enemies object.
7. Combat shooting of company.
8. First march by foot.
10. Eating, rest sleeping, hygienic measures.

Actions by training alarm signal continued 90 minutes and were 3.1% of total time. Mean HBR was 95.4 b.p.m., relative pulse intensity (pulse increment in respect to rest state) was 58.3%. Analysis of pulse values distribution in this period witness that maximal HBR reached 145 b.p.m. (approximately 3% of total time).

Preparation of arms and machinery for march and shooting took 480 minutes (16.5%) of total time. Mean HBR was 113.9 b.p.m. Such HBR was conditioned by the fact that field maneuvers envisaged mastering of certain trainings tasks. Such training stage reflected in general structure of infantryman’s motor actions and character of his physical loads. These actions are of collective character, but every officer has own kind of functioning, depending on his military specialty.

Actions in march were organized moving of military officers on IFV, mainly off roads and on field roads. IFV march took 6.3% of time. It should be noted that motor functioning of military officers at this time was minimal. But uncomfortable position inside IFV, durable static tension, vibrations, constant oscillations and certain gas contamination was 113.9 b.p.m. Such HBR was conditioned by the fact that field maneuvers envisaged mastering of certain trainings tasks. Such training stage reflected in general structure of infantryman’s motor actions and character of his physical loads. These actions are of collective character, but every officer has own kind of functioning, depending on his military specialty.

Functions in the staging area took 3.1% of training time. Mean HBR increased to 109.2 b.p.m. but in part of the time pulse was from 180 to 200 b.p.m. (4.4%). In general such functioning was characterized more or less smooth pulse. Distribution of time for actions in different HBR ranges was the following: from 72 to 155 b.p.m. (94.5% of time). Loads in this period were qualified as aerobic-anaerobic from maximal to moderate aerobic power.

Defensive actions took 11.9% of training time. Military officers arranged company strong point. Work was fulfilled in quick temp and required physical and psychological loads. Mean HBR was 120 b.p.m. and maximal – up to 150 b.p.m. Most of time work was fulfilled with HBR of 100-140 b.p.m. (74.4% of time).

Actions in attack and capture of enemies object took about 1.1% of total training time. Mean HBR was at level of 138.1 b.p.m. and relative pulse intensity was 130%. It was the highest value in block of soldiers’ functioning. As per the data of pulse registration main part of actions (up to 70%) was fulfilled with HBR of 100-140 b.p.m. (up to 70%) and in some cases increased up to 165 b.p.m. In such conditions high requirements are set to power and static endurance of arms’ and back’s muscles.

Functioning in the staging area took 3.1% of training time. Mean HBR increased to 109.2 b.p.m. but in part of the time pulse was from 180 to 200 b.p.m. (4.4%). In general such functioning was characterized more or less smooth pulse. Distribution of time for actions in different HBR ranges was the following: from 72 to 155 b.p.m. (94.5% of time). Loads in this period were qualified as aerobic-anaerobic from maximal to moderate aerobic power.

Defensive actions took 11.9% of training time. Military officers arranged company strong point. Work was fulfilled in quick temp and required physical and psychological loads. Mean HBR was 120 b.p.m. and maximal – up to 150 b.p.m. Most of time work was fulfilled with HBR of 100-140 b.p.m. (74.4% of time).

Actions in march were organized moving of military officers on IFV, mainly off roads and on field roads. IFV march took 6.3% of time. It should be noted that motor functioning of military officers at this time was minimal. But uncomfortable position inside IFV, durable static tension, vibrations, constant oscillations and certain gas contamination was 113.9 b.p.m. Such HBR was conditioned by the fact that field maneuvers envisaged mastering of certain trainings tasks. Such training stage reflected in general structure of infantryman’s motor actions and character of his physical loads. These actions are of collective character, but every officer has own kind of functioning, depending on his military specialty.

Functions in the staging area took 3.1% of training time. Mean HBR increased to 109.2 b.p.m. but in part of the time pulse was from 180 to 200 b.p.m. (4.4%). In general such functioning was characterized more or less smooth pulse. Distribution of time for actions in different HBR ranges was the following: from 72 to 155 b.p.m. (94.5% of time). Loads in this period were qualified as aerobic-anaerobic from maximal to moderate aerobic power.

Defensive actions took 11.9% of training time. Military officers arranged company strong point. Work was fulfilled in quick temp and required physical and psychological loads. Mean HBR was 120 b.p.m. and maximal – up to 150 b.p.m. Most of time work was fulfilled with HBR of 100-140 b.p.m. (74.4% of time).

Actions in attack and capture of enemies object took about 1.1% of total training time. Mean HBR was at level of 138.1 b.p.m. and relative pulse intensity was 130%. It was the highest value in block of soldiers’ functioning. As per the data of pulse registration main part of actions (up to 70%) was fulfilled with HBR of 100-140 b.p.m. (up to 70%) and in some cases increased up to 165 b.p.m. In such conditions high requirements are set to power and static endurance of arms’ and back’s muscles.

Functioning in the staging area took 3.1% of training time. Mean HBR increased to 109.2 b.p.m. but in part of the time pulse was from 180 to 200 b.p.m. (4.4%). In general such functioning was characterized more or less smooth pulse. Distribution of time for actions in different HBR ranges was the following: from 72 to 155 b.p.m. (94.5% of time). Loads in this period were qualified as aerobic-anaerobic from maximal to moderate aerobic power.

Defensive actions took 11.9% of training time. Military officers arranged company strong point. Work was fulfilled in quick temp and required physical and psychological loads. Mean HBR was 120 b.p.m. and maximal – up to 150 b.p.m. Most of time work was fulfilled with HBR of 100-140 b.p.m. (74.4% of time).

Functions in the staging area took 3.1% of training time. Mean HBR increased to 109.2 b.p.m. but in part of the time pulse was from 180 to 200 b.p.m. (4.4%). In general such functioning was characterized more or less smooth pulse. Distribution of time for actions in different HBR ranges was the following: from 72 to 155 b.p.m. (94.5% of time). Loads in this period were qualified as aerobic-anaerobic from maximal to moderate aerobic power.
### Indicators of scope and intensity of loads during field maneuvers

<table>
<thead>
<tr>
<th>Military applied actions</th>
<th>HBR (b.p.m.)</th>
<th>Time, taken by action (min.)</th>
<th>Relative tension of HBR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actions by training alarm signal</td>
<td>95.8</td>
<td>90</td>
<td>59.0</td>
</tr>
<tr>
<td>Preparation of arms and machinery for march and shooting</td>
<td>113.9</td>
<td>480</td>
<td>89.8</td>
</tr>
<tr>
<td>March on IFV with rest</td>
<td>106.6</td>
<td>182</td>
<td>77.7</td>
</tr>
<tr>
<td>Functioning in the staging area</td>
<td>109.2</td>
<td>90</td>
<td>82.0</td>
</tr>
<tr>
<td>Organization of defense and repelling of attack</td>
<td>120.1</td>
<td>344</td>
<td>100.2</td>
</tr>
<tr>
<td>Actions in attack and capture of enemies object</td>
<td>138.1</td>
<td>32</td>
<td>130.2</td>
</tr>
<tr>
<td>Combat shooting of company</td>
<td>83.1</td>
<td>360</td>
<td>38.5</td>
</tr>
<tr>
<td>First march by foot</td>
<td>106.6</td>
<td>98</td>
<td>77.7</td>
</tr>
<tr>
<td>Second march by foot</td>
<td>142.1</td>
<td>154</td>
<td>136.8</td>
</tr>
<tr>
<td>Eating, rest sleeping, hygienic measures</td>
<td>67.5</td>
<td>1050</td>
<td>11.5</td>
</tr>
</tbody>
</table>
### Indicators of loads during field maneuvers

<table>
<thead>
<tr>
<th>Class interval s of HBR (b.p.m.)</th>
<th>Actions by training alarm signal</th>
<th>Preparation of arms and machinery for march and shooting</th>
<th>March on IFV with rest</th>
<th>Functioning in the staging area</th>
<th>Organizational defense and repelling of attack</th>
<th>Actions in attack and capture of enemies object</th>
<th>Combat shooting of company</th>
<th>First march by foot</th>
<th>Second march by foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>min.</td>
<td>%</td>
<td>min.</td>
<td>%</td>
<td>min.</td>
<td>%</td>
<td>min.</td>
<td>%</td>
<td>min.</td>
<td>%</td>
</tr>
<tr>
<td>191-200</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>181-190</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>171-180</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.1</td>
<td>0.0</td>
<td>1.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>161-170</td>
<td>0.0</td>
<td>1.2</td>
<td>8.4</td>
<td>0.0</td>
<td>0.0</td>
<td>1.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>151-160</td>
<td>0.0</td>
<td>2.9</td>
<td>9.6</td>
<td>0.0</td>
<td>2.0</td>
<td>0.6</td>
<td>10.3</td>
<td>1.4</td>
<td>1.0</td>
</tr>
<tr>
<td>141-150</td>
<td>3.3</td>
<td>4.3</td>
<td>9.0</td>
<td>12.6</td>
<td>7.8</td>
<td>7.8</td>
<td>53.15</td>
<td>4.2</td>
<td>0.6</td>
</tr>
<tr>
<td>131-140</td>
<td>5.6</td>
<td>3.6</td>
<td>9.2</td>
<td>12.6</td>
<td>8.9</td>
<td>8.9</td>
<td>56.16</td>
<td>3.6</td>
<td>1.4</td>
</tr>
<tr>
<td>121-130</td>
<td>6.7</td>
<td>3.2</td>
<td>6.7</td>
<td>10.5</td>
<td>8.9</td>
<td>72.20</td>
<td>14.9</td>
<td>13.9</td>
<td>27.6</td>
</tr>
<tr>
<td>111-120</td>
<td>23.2</td>
<td>25.1</td>
<td>110.2</td>
<td>22.9</td>
<td>8.8</td>
<td>6.7</td>
<td>67.19</td>
<td>1.9</td>
<td>3.1</td>
</tr>
<tr>
<td>101-110</td>
<td>7.8</td>
<td>24.2</td>
<td>24.6</td>
<td>7.8</td>
<td>18.2</td>
<td>20.6</td>
<td>61.17</td>
<td>2.6</td>
<td>6.3</td>
</tr>
<tr>
<td>91-100</td>
<td>8.9</td>
<td>113.2</td>
<td>23.5</td>
<td>31.3</td>
<td>17.1</td>
<td>19.1</td>
<td>21.6</td>
<td>9.2</td>
<td>2.6</td>
</tr>
<tr>
<td>81-90</td>
<td>9.0</td>
<td>10.0</td>
<td>3.6</td>
<td>31.17</td>
<td>12.13</td>
<td>6.1</td>
<td>1.7</td>
<td>3.1</td>
<td>53.14</td>
</tr>
<tr>
<td>71-80</td>
<td>1.1</td>
<td>1.1</td>
<td>1.8</td>
<td>30.16</td>
<td>7.8</td>
<td>11.3</td>
<td>3.2</td>
<td>0.0</td>
<td>64.17</td>
</tr>
<tr>
<td>61-70</td>
<td>21.2</td>
<td>23.2</td>
<td>0.0</td>
<td>1.1</td>
<td>7.1</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>45.12</td>
</tr>
<tr>
<td>51-60</td>
<td>7.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>7.0</td>
<td>0.0</td>
</tr>
<tr>
<td>90</td>
<td>480</td>
<td>182</td>
<td>90</td>
<td>344</td>
<td>32</td>
<td>360</td>
<td>98</td>
<td>154</td>
<td>60</td>
</tr>
</tbody>
</table>
Analyzing timing data of field maneuvers we can note that the highest load was endured by military officers in attack actions and in marches. The least loads were endured with organization and fulfillment of combat shooting.

In general, physical load gradually increased from the beginning of training to the middle of the first day, when military officers mastered attacking actions. Then we observed its reduction and during certain period it was insignificant.

In the second day of training, loads’ dynamic had other characteristic, videlicet: gradual increase of tension from moderate to maximal.

**Discussion**

As on to day, for optimization of military officers’ physical fitness research and studying of loads’ characteristics, which are endured by military officers during training combat actions (military training, field maneuvers, combat actions) are still urgent. In the process of our research we proved the character of military officers’ actions, established by such scientists as L.A. Weiner-Dubrovin (1980), L.P. Popov (1983). We also supplemented indicators of scope and intensity of loads, endured military officers of mechanized units in their professional functioning, which were studied by L/P/ Leont’ev (2000) and S.I. Glazunov (2003). Comparing with mentioned above scientists we researched wider spectrum of military applied actions. Measurements were carried out continuously from the beginning to the end of experiment. Modern technologies were used.

For the first time scope and intensity of loads of mechanized units’ military officers in field maneuvers were determined. Class intervals of HBR during fulfillment of different professional actions were calculated. It permits to orient content and intensity of physical exercises, during training of exactly those exercises, which facilitate the most effective fulfillment of combat tasks.

**Conclusions:**

Analysis of HBR results showed that main part of motor actions was fulfilled mainly in aerobic-anaerobic mode.

Three HBR ranges can be marked-out at these trainings:

1. Motor actions in HBR range from 60 to 100 b.p.m. – approximately 35% of training time.
2. Motor actions in HBR range from 100 to 130 b.p.m. - about 40.5% of training time.
3. Motor actions in HBR range from 130-160 b.p.m. – 23.25%.

Besides, little part of military officers’ actions was conducted with HBR 160-190 b.p.m. (1.25%).

These data can be used for organization of physical training of mechanized units’ military officers, for determination of its orientation, intensity and correlation of loads of different power.

**Acknowledgement**

The research was conducted in compliance with plan of scientific and scientific-technical functioning of physical training and sports Department of Land Forces’ Command of Armed Forces of Ukraine by topic “Formation of professional features of future officer by means of physical education during studying at MHEE”, Code “Interconnection” (state registration number 0106U010783).

**Conflict of interests**

The authors declare that there is no conflict of interests.

**References:**

6. Romanchuk S. Fizichna pidgotovka iak sistemoutvoruiuchij chinnik pidtrimki boiezdatnosti vijs’kovosluzhbovciv v umovakh spektonogo klimatu [Physical training as system-formation factor of maintenance of military officers’ combat fitness in conditions of hot climate]. Zdorov’esberegausiechnie tehnologii, fizesheskata reabilitatsiya i rekreaicia v vysshikh uchenyh zavedeniiakh, III mezhdunarodna konferenciia, Belgorod-Krasnoiarusk-Khar’kov [Health related technologies, physical rehabilitation and recreation in higher educational establishments, III international conference, Belgorod-Krasnoiarusk-Kharkov]; 2010 (in Ukrainian)
8. Fedak S. Fizichna pidgotovka iak zasib zavchasnoj adaptatsii vijs’kovosluzhbovciv mirovorchogo kontingentu do dij
v nezvichnikh umovakh službi [Physical training as a mean of preliminary adaptation of peacekeeping contingent military officers for actions in unusual conditions]. 

Naukovo-pedagogichni problemy fizichnoi kul'turi 2011;11:442-446. (in Ukrainian)


10 Chapligin V. Vpliv faktoriv zovnishn'ogo seredovishcha na formuvannia zdorov'ia liudini [Influence of environmental factors on formation of human health]. Fizichna kul'tura, sporti ta zdorov'ia nacii 2004;5:509-513. (in Ukrainian)


12 Shvec' AV, Luk'ianchuk IA. Fiziologo-psikhichna kharakteristika umov profesijnoi diial'nosti vijs'kovoslushblov'cov mirotvorckih kontinentiv ZS Ukraini [Physiological-psychic characteristic of professional functioning’s conditions of military officers-peacekeepers of AF of Ukraine]. Problemi vijs'kovoi okhoroni zdorov'ia 2006;16:382-387. (in Ukrainian)

13 Shekera OG. Novi problemy mizhnarodnoi mirotvorchoi diial'nosti Ukraini [New problems of international peacekeeping activity of Ukraine]. Kiev; 2004 (in Ukrainian)


16 Neschadym M.I. Reform in the Ukrainian Military Education. NATO training group working group on individual training and education developments. Bonn; 1998.


Information about the authors:

Shlyamar I.L.; http://orcid.org/0000-0003-1224-7935; shlamar68@gmail.com; The command of the Army of the Armed Forces of Ukraine; Dehtyarska street, 19, Kyiv, Ukraine.

Yaworsky A.I.; http://orcid.org/0000-0002-6479-372X; velandre@ukr.net; Lviv State University of Physical Culture; Kostyushko str. 11, Lviv, 79007, Ukraine;

Romanchuk S.V.; http://orcid.org/0000-0002-2246-6587; romanchukserg@mail.ru; Hetman Petro Sahaidachny Academy; Heroes Square street, 32, Lviv, Ukraine;

Petruk A.P.; http://orcid.org/0000-0002-2776-8285; andpetruk@rambler.ru; Hetman Petro Sahaidachny Academy; Heroes Square street, 32, Lviv, Ukraine;

Dzyama V.V.; http://orcid.org/0000-0003-0217-5667; sasaus2002@gmail.com; Military unit A 0284; Stryiska street, 88, Lviv, Ukraine;

Romaniv I.V.; http://orcid.org/0000-0000-0003-0135-0135; pxrivs@gmail.com; Military unit A 1108; Budivelnna street, 10/2, Drobitch, Ukraine.

Vorontsov A.S.; http://orcid.org/0000-0002-8950-1703; asvoronsa@gmail.com; Security Service of Ukraine; Nezalezhnia street, 17/236, Brovary, Ukraine.

Cite this article as: Shlyamar I.L., Yaworsky A.I., Romanchuk S.V., Petruk A.P., Dzyama V.V., Romaniv I.V., Vorontsov A.S. Characteristics of physical loads endured by military officers of mechanized troops during field manoeuvres. Pedagogics, psychology, medical-biological problems of physical training and sports, 2015;9:57-63. http://dx.doi.org/10.15561/18189172.2015.0909

The electronic version of this article is the complete one and can be found online at: http://www.sportpedagogy.org.ua/html/archive-e.html

This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (http://creativecommons.org/licenses/by/3.0/deed.en).

Received: 10.06.2015
Accepted: 19.07.2015; Published: 20.07.2015